3 research outputs found

    Estimating the Rotation Rate in the Vacuolar Proton-ATPase in Native Yeast Vacuolar Membranes

    Get PDF
    The rate of rotation of the rotor of the yeast vacuolar proton-ATPase (V-ATPase), relative to the stator or the steady parts of enzyme, is estimated in native vacuolar membrane vesicles of Saccharomyces cerevisiae under standardised conditions. Membrane vesicles are spontaneously formed after exposing purified yeast vacuoles to osmotic shock. The fraction of the total ATPase activity originating from V-ATPase is determined using the potent and specific inhibi-tor of the enzyme, concanamycin A. Inorganic phosphate liberated from ATP in the vacuolar membrane vesicle system, during 10 min of ATPase activity at 20 °C, is assayed spectrophotometrically for different concanamycin A concentrations. A fit to the quadratic binding equation, assuming a single concanamycin A binding site on a monomeric V-ATPase (our data is incompatible with models assuming more binding sites) to the inhibitor titration curve determines the concentration of the enzyme. Combining it with the known rotation:ATP stoichiometry of V-ATPase and the assayed concentration of inorganic phosphate liberated by V-ATPase leads to an average rate of ~9.53 Hz of the 360 degrees rotation, which, according to the time-dependence of the activity, extrapolates to ~14.14 Hz for the beginning of the reaction. These are low limit estimates. To our knowledge this is the first report of the rotation rate in a V-ATPase that is not subjected to genetic or chemical modification and it is not fixed on a solid support, instead it is functioning in its native membrane environment

    Estimating the rotation rate in the vacuolar proton-ATPase in native yeast vacuolar membranes.

    No full text
    The rate of rotation of the rotor in the yeast vacuolar proton-ATPase (V-ATPase), relative to the stator or steady parts of the enzyme, is estimated in native vacuolar membrane vesicles from Saccharomyces cerevisiae under standardised conditions. Membrane vesicles are formed spontaneously after exposing purified yeast vacuoles to osmotic shock. The fraction of total ATPase activity originating from the V-ATPase is determined by using the potent and specific inhibitor of the enzyme, concanamycin A. Inorganic phosphate liberated from ATP in the vacuolar membrane vesicle system, during ten min of ATPase activity at 20 °C, is assayed spectrophotometrically for different concanamycin A concentrations. A fit of the quadratic binding equation, assuming a single concanamycin A binding site on a monomeric V-ATPase (our data are incompatible with models assuming multiple binding sites), to the inhibitor titration curve determines the concentration of the enzyme. Combining this with the known ATP/rotation stoichiometry of the V-ATPase and the assayed concentration of inorganic phosphate liberated by the V-ATPase, leads to an average rate of ~10 Hz for full 360° rotation (and a range of 6–32 Hz, considering the ± standard deviation of the enzyme concentration), which, from the time-dependence of the activity, extrapolates to ~14 Hz (8–48 Hz) at the beginning of the reaction. These are lower-limit estimates. To our knowledge, this is the first report of the rotation rate in a V-ATPase that is not subjected to genetic or chemical modification and is not fixed to a solid support; instead it is functioning in its native membrane environment

    The highly conserved, N-terminal (RXXX)8 motif of mouse Shadoo mediates nuclear accumulation.

    Get PDF
    The prion protein (PrP)-known for its central role in transmissible spongiform encephalopathies-has been reported to possess two nuclear localization signals and localize in the nuclei of certain cells in various forms. Although these data are superficially contradictory, it is apparent that nuclear forms of the prion protein can be found in cells in either the healthy or the diseased state. Here we report that Shadoo (Sho)-a member of the prion protein superfamily-is also found in the nucleus of several neural and non-neural cell lines as visualized by using an YFP-Sho construct. This nuclear localization is mediated by the (25-61) fragment of mouse Sho encompassing an (RXXX)8 motif. Bioinformatic analysis shows that the (RXXX)n motif (n=7-8) is a highly conserved and characteristic part of mammalian Shadoo proteins. Experiments to assess if Sho enters the nucleus by facilitated transport gave no decisive results: the inhibition of active processes that require energy in the cell, abolishes nuclear but not nucleolar accumulation. However, the (RXXX)8 motif is not able to mediate the nuclear transport of large fusion constructs exceeding the size limit of the nuclear pore for passive entry. Tracing the journey of various forms of Sho from translation to the nucleus and discerning the potential nuclear function of PrP and Sho requires further studies
    corecore